WELDER BRANCH CIRCUITS AND OVERCURRENT PROTECTION

WIRING METHODS FOR WELDER BRANCH CIRCUITS

Materials for wiring interior electrical systems in buildings vary depending on:

  • Intended use and amount of power demand on the circuit
  • Type of occupancy and size of the building
  • National and local regulations
  • Environment in which the wiring must operate.

Wiring systems in a single family home or duplex, for example, are simple, with relatively low power requirements, infrequent changes to the building structure and layout, usually with dry, moderate temperature, and noncorrosive environmental conditions. In a light commercial environment, more frequent wiring changes can be expected, large apparatus may be installed, and special conditions of heat or moisture may apply. Heavy industries have more demanding wiring requirements, such as very large currents and higher voltages, frequent changes of equipment layout, corrosive, or wet or explosive atmospheres. In facilities that handle flammable gases or liquids, special rules may govern the installation and wiring of electrical equipment in hazardous areas.

Knob and tube

The earliest standardized method of wiring in buildings, in common use in North America from about 1880 to the 1930s, was knob and tube (K&T) wiring: single conductors were run through cavities between the structural members in walls and ceilings, with ceramic tubes forming protective channels through joists and ceramic knobs attached to the structural members to provide air between the wire and the lumber and to support the wires. Since air was free to circulate over the wires, smaller conductors could be used than required in cables. By arranging wires on opposite sides of building structural members, some protection was afforded against short-circuits that can be caused by driving a nail into both conductors simultaneously. By the 1940s, the labor cost of installing two conductors rather than one cable resulted in a decline in new knob-and-tube installations.

Metal-sheathed wires

  • early form of insulated cable introduced in 1896 consisted of two impregnated-paper-insulated conductors in an overall lead sheath. Joints were soldered, and special fittings were used for lamp holders and switches. These cables were similar to underground telegraph and telephone cables of the time. Paper-insulated cables proved unsuitable for interior wiring installations because very careful workmanship was required on the lead sheaths to ensure moisture did not affect the insulation.
  • a system later invented in the UK in 1908 employed vulcanized-rubber insulated wire enclosed in a strip metal sheath. The metal sheath was bonded to each metal wiring device to ensure continuity.
  • A system developed in Germany called Kuhlo wire used one, two, or three rubber-insulated wires in a brass or lead-coated iron sheet tube, with a crimped seam. The enclosure could also be used as a return conductor. Kuhlo wire could be run exposed on surfaces and painted, or embedded in plaster. Special outlet and junction boxes were made for lamps and switches, made either of porcelain or sheet steel. The crimped seam was not considered as watertight as the Stannos wire used in England, which had a soldered sheath.
  • A somewhat similar system called "concentric wiring" was introduced in the United States around 1905. In this system, an insulated copper wire was wrapped with copper tape which was then soldered, forming the grounded (return) conductor of the wiring system. The bare metal sheath, at earth potential, was considered safe to touch. While companies such as General Electric manufactured fittings for the system, and a few buildings were wired with it, it was never adopted into the US National Electrical Code. Drawbacks of the system were that special fittings were required, and that any defect in the connection of the sheath would result in the sheath becoming energized.

Other methods of securing wiring that are now obsolete include:

  • Re-use of existing gas pipes for electric lighting. Insulated conductors were pulled into the pipes feeding gas lamps.
  • Wood moldings with grooves cut for single conductor wires, covered by a wooden cap strip. These were prohibited in North American electrical codes by 1928. Wooden molding was also used to some degree in England, but was never permitted by German and Austrian rules.
  • Metal molding systems, with a flattened oval section consisting of a base strip and a snap-on cap channel, were more costly than open wiring or wooden molding. Similar systems are still available today.
  • A system of flexible twin cords supported by glass or porcelain buttons was used near the turn of the 20th century in Europe, but was soon replaced by other methods.
  • During the first years of the 20th century various patented forms of wiring system such as Bergman and Peschel tubing were used to protect wiring; these used very thin fiber tubes or metal tubes which were also used as return conductors.
  • In Austria, wires were concealed by embedding a rubber tube in a groove in the wall, plastering over it and then removing the tube and pulling in wires in the cavity.

Cables

Armored cables with two rubber-insulated conductors in a flexible metal sheath were used as early as 1906, and were considered at the time a better method than open knob-and-tube wiring, although much more expensive.

The first polymer-insulated cables for building wiring were introduced in 1922. These were two or more solid copper wires, with rubber insulation, woven cotton cloth over each conductor for protection of the insulation, with an overall woven jacket, usually impregnated with tar as a protection from moisture. Waxed paper was used as a filler and separator.

Rubber-insulated cables become brittle over time because of exposure to oxygen, so the

y must be handled with care, and should be replaced during renovations. When switches, outlets or light fixtures are replaced, the mere act of tightening connections may cause insulation to flake off the conductors. Rubber was hard to separate from bare copper, so copper was tinned, causing slightly more resistance.

About 1950, PVC insulation and jackets were introduced, especially for residential wiring. About the same time, single conductors with a thinner PVC insulation and a thin nylon jacket became common.

Aluminium wire was common in North American residential wiring from the late 1960s to mid 1970s, because of the rising cost of copper. Because of its greater resistivity, aluminium wiring requires larger conductors than with copper. For instance, instead of 14 AWG (American wire gauge) for most lighting circuits, aluminium wiring would typically be 12 AWG on a typical 15 amp circuit, though local building codes may vary.

Aluminium conductors were originally used with wiring devices intended for copper wires. This can cause defective connections unless all devic

es (breakers, switches, receptacles, splice connectors (i.e., wire nuts), etc.) were designed to address problems with junctions between dissimilar metals, oxidization on metal surfaces and mechanical effects that occur as different metals expand at different rates with increases in temperature. Because of improper design and installation, some junctions to wiring devices overheated under heavy current load and caused fires. Revised standards for wiring devices (such as the CO/ALR "copper-aluminum-revised" designation) were developed to reduce these problems.

Aluminium conductors are still used for power distribution and large feeder circuits because they cost less than copper wiring, especially in the large sizes needed for heavy current loads. Aluminum conductors must be installed with compatible connectors.

The simplest form of cable has two insulated conductors twisted together to form a unit; such unjacketed cables with two or three conductors are used for low-voltage signal and control applications such as doorbell wiring. In North American practice, an overhead cable from a transformer on a power pole to a residential electrical service consists of three twisted (triplexed) wires, often with one being a bare neutral and the other two being insulated for the line voltage.

electrical network

electrical circuit

  • network that has a closed loop, giving a return path for the current. A network is a connection of two or more components, and may not necessarily be a circuit.

Electrical networks that consist only of sources (voltage or current), linear lumped elements (resistors, capacitors, inductors), and linear distributed elements (transmission lines) can be analyzed by algebraic and transform methods to determine DC response, AC response, and transient response.

A network that also contains active electronic components is known as an electronic circuit. Such networks are generally nonlinear and require more complex design and analysis tools.

Electrical laws

A number of electrical laws apply to all electrical networks. These include:

  • Kirchhoff's current law: The sum of all currents entering a node is equal to the sum of all currents leaving the node.
  • Kirchhoff's voltage law: The directed sum of the electrical potential differences around a loop must be zero.
  • Ohm's law: The voltage across a resistor is equal to the product of the resistance and the current flowing through it (at constant temperature).
  • Norton's theorem: Any network of voltage and/or current sources and resistors is electrically equivalent to an ideal current source in parallel with a single resistor.
  • Thévenin's theorem: Any network of voltage and/or current sources and resistors is electrically equivalent to a single voltage source in series with a single resistor.

Linearization around operating point

  • find a steady state solution, that is, one where all nodes conform to Kirchhoff's Current Law and the voltages across and through each element of the circuit conform to the voltage/current equations governing that element.
  • operating points of each element in the circuit are known. For a small signal analysis, every non-linear element can be linearized around its operation point to obtain the small-signal estimate of the voltages and currents. This is an application of Ohm's Law. The resulting linear circuit matrix can be solved with Gaussian elimination.

OVERCURRENT PROTECTION

Power system protection

  • branch of electrical power engineering that deals with the protection of electrical power systems from faults through the isolation of faulted parts from the rest of the electrical network. The objective of a protection scheme is to keep the power system stable by isolating only the components that are under fault, whilst leaving as much of the network as possible still in operation. Thus, protection schemes must apply a very pragmatic and pessimistic approach to clearing system faults. For this reason, the technology and philosophies utilized in protection schemes can often be old and well-established because they must be very reliable.

Protection systems usually comprise five components:

  • Current and voltage transformers to step down the high voltages and currents of the electrical power system to convenient levels for the relays to deal with;
  • Relays to sense the fault and initiate a trip, or disconnection, order;
  • Circuit breakers to open/close the system based on relay and autorecloser commands;
  • Batteries to provide power in case of power disconnection in the system.
  • Communication channels to allow analysis of current and voltage at remote terminals of a line and to allow remote tripping of equipment.

For parts of a distribution system, fuses are capable of both sensing and disconnecting faults.

Failures may occur in each part, such as insulation failure, fallen or broken transmission lines, incorrect operation of circuit breakers, short circuits and open circuits. Protection devices are installed with the aims of protection of assets, and ensure continued supply of energy. The three classes of protective devices are:

Protective devices

  • Protective relays control the tripping of the circuit breakers surrounding the faulted part of the network
  • Automatic operation, such as auto-reclosing or system restart
  • Monitoring equipment which collects data on the system for post event analysis

While the operating quality of these devices, and especially of the protective relays, is always critical, different strategies are considered for protecting the different parts of the system. Very important equipment may have completely redundant and independent protective systems, while a minor branch distribution line may have very simple low-cost protection.

Raceways

Insulated wires may be run in one of several forms of a raceway between electrical devices. This may be a pipe, called a conduit, or in one of several varieties of metal (rigid steel or aluminum) or non-metallic (PVC or HDPE) tubing. Rectangular cross-section metal or PVC wire troughs (North America) or trunking (UK) may be used if many circuits are required. Wires run underground may be run in plastic tubing encased in concrete, but metal elbows may be used in severe pulls. Wiring in exposed areas, for example factory floors, may be run in cable trays or rectangular raceways having lids.

Where wiring, or raceways that hold the wiring, must traverse fire-resistance rated walls and floors, the openings are required by local building codes to be firestopped. In cases where the wiring has to be kept operational during an accidental fire, fireproofing must be applied to maintain circuit integrity in a manner to comply with a product's certification listing. The nature and thickness of any passive fire protection materials used in conjunction with wiring and raceways has a quantifiable impact upon the ampacity derating.

Cable trays are used in industrial areas where many insulated cables are run together. Individual cables can exit the tray at any point, simplifying the wiring installation and reducing the labour cost for installing new cables. Power cables may have fittings in the tray to maintain cl

earance between the conductors, but small control wiring is often installed without any intentional spacing between cables.

Since wires run in conduits or underground cannot dissipate heat as easily as in open air, and adjacent circuits contribute induced currents, wiring regulations give rules to establish the current capacity (ampacity).

Special fittings are used for wiring in potentially explosive atmospheres.

Bus bars, bus duct, cable bus

for very heavy currents in electrical apparatus, and for heavy currents distributed through a building, bus bars can be used. Each live conductor of such a system is a rigid piece of copper or aluminum, usually in flat bars (but sometimes as tubing or other shapes). Open bus bars are never used in publicly accessible areas, although they are used in manufacturing plants and power company switch yards to gain the benefit of air cooling. A variation is to use heavy cables, especially where it is desirable to transpose or "roll" phases.

In industrial applications, conductor bars are assembled with insulators in groun

ded enclosures. This assembly, known as bus duct or busway, can be used for connections to large switchgear or for bringing the main power feed into a building. A form of bus duct known as plug-in bus is used to distribute power down the length of a building; it is constructed to allow tap-off switches or motor controllers to be installed at definite places along the bus. T

he big advantage of this scheme is the ability to remove or add a branch circuit without removing voltage from the whole duct.

Bus ducts may have all phase conductors in the same enclosure (non-isolated bus), or may have each conductor separated by a grounded barrier from the adjacent phases (segregated bus). For conducting large currents between devices, a cable bus is used. For very large currents in generating stations or substations, where it is difficult to provide circuit protection, an isolated-phase bus is used. Each phase of the circuit is run in a separate grounded metal enclosure. The only fault possible is a phase-to-ground fault, since the enclosuresare separated. This type of bus can be rated up to 50,000 amperes and up to hundreds of kilovolts (during normal service, not just for faults), but is not used for building wiring in the conventional sense.

Electrical panels

Electrical panels are easily accessible junction boxes used to reroute and switch electrical services.

service drop
  • electrical line running from a utility pole to a customer's building or other premises. It is the point where electric utilities provide power to their customers.

At the customer's premises, the wires usually enter the building through a weatherhead that protects against entry of rain and snow, and drop down though conduit to an electric meter which measures and records the power used for billing purposes, then enters the main service panel. The utility's portion of the system ends, and the customer's wiring begins, at the output socket of the electric meter. The service panel will contain a "main" fuse or circuit breaker, which controls all of the electrical current entering the building at once, and a number of smaller fuses/breakers, which protect individual branch circuits. There is always a main shutoff switch to turn off all power; when circuit breakers are used this is provided by the main circuit breaker.

Types of protection

  • Generator sets – In a power plant, the protective relays are intended to prevent damage to alternators or of the transformers in case of abnormal conditions of operation, due to internal failures, as well as insulating failures or regulation malfunctions. Such failures are unusual, so the protective relays have to operate very rarely. If a protective relay fails to detect a fault, the damage to the alternator or to the transformer may have important financial consequences for the repair or replacement of equipment and the value of the energy that otherwise would have been sold.
  • High voltage transmission network – Protection on the transmission and distribution serves two functions: Protection of plant and protection of the public (including employees). At a basic level protection looks to disconnect equipment which experience an overload or a connection to earth. Some items in substations such as transformers may require additional protection based on temperature or gassing among others.
  • Overload – Overload protection requires a current transformer which simply measures the current in a circuit. If this current exceeds a pre-determined level, a circuit breaker or fuse should operate.
  • Earth fault – Earth fault protection again requires current transformers and senses an imbalance in a three-phase circuit. Normally a three-phase circuit is in balance, so if a single (or multiple) phases are connected to earth an imbalance in current is detected. If this imbalance exceeds a pre-determined value a circuit breaker should operate.
  • Distance – Distance protection detects both voltage and current. A fault on a circuit will generally create a sag in the voltage level. If this voltage falls below a pre-determined level and the current is above a certain level the circuit breaker should operate. This is useful on long lines where if a fault was experienced at the end of the line the impedance of the line itself may inhibit the rise in current. Since a voltage sag is required to trigger the protection the current level can actually be set below the normal load on the line.
  • Back-up – At all times the objective of protection is to remove only the affected portion of plant and nothing else. Sometimes this does not occur for various reasons which can include:
    • Mechanical failure of a circuit breaker to operate
    • Incorrect protection setting
    • Relay failures
A failure of primary protection will usually result in the operation of back-up protection which will generally remove both the affected and unaffected items of plant to remove the fault.
  • Low-voltage networks – The low voltage network generally relies upon fuses or low-voltage circuit breakers to remove both overload and earth faults.

Coordination

Protective device coordination is the process of determining the "best fit" timing of current interruption when abnormal electrical conditions occur. The goal is to minimize an outage to the greatest extent possible. Historically, protective device coordination was done on translucent log-log paper. Modern methods normally include detailed computer based analysis and reporting.

Category:

4 comments:

Joe said...

A process to join metals together by liquefying them and utilizing a filler to connect the parts is called welding. In order to weld metals, you require a blend of high heat as well as pressure. In those days, around 2000 B.C.
heat sealing bags

robinjack said...

This is very informatics, fresh and clear. I feel that everything has been portrayed in methodical way with the goal that peruser could get greatest data and realize numerous things. camping generators

Harsha said...

I really want to appreciate the quality of this article. I love the way of your presentation of thoughts, views and helpful content. No doubt you have done a great work. Thanks. Keep it up!
Electrical Panel Boards Suppliers and dealers

Aaqib Alee said...

Your content is really amazing and keep sharing your efforts with us.
Electrical Building Design course

Post a Comment